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For interpolation matrices arising in connection with translates of a conditionally
negative definite, radially symmetric IRs-function of order 1, we give a general
method for obtaining bounds both on the norm of the inverse of the interpolation
matrix and on the condition number of that matrix. We apply our method to
obtain these bounds in several cases, including those associated with the functions
)1 + IIxll ~ and log(l + Ilxll n. © 1991 Academic Press. Inc.

1. INTRODUCTION

Data fitting in two or more dimensions is a practical problem that
has many important applications-solution of computer aided design
problems, for example. Recently, progress has been made in solving multi
dimensional data fitting problems. Of the latest approaches to multi-dimen
sional data fitting, the two most important are the method of thin plate
splines, as developed by Duchon [3,4J, and Hardy's method of multi
quadric surfaces [8]. Hardy's approach has undergone rapid development
and now provides an elegant, convenient tool for interpolating scattered,
multivariate data. Instrumental in this development were results of
Madych and Nelson [10, 11 J and of Micchelli [12]. Among other things,
they answered a question of Franke [7J by showing that N arbitrary,
distinct points {xj } f= 1 in ~2 endowed with the Hilbert-space norm could
always be interpolated by linear combinations of the N functions
{~1 + IIx-x;IID7=I' Their research has stimulated much work on the
Hardy approach to multi-dimensional data fitting. For a review of these
and other developments, we refer the reader to Dyn's survey article [5].

Franke's interpolation problem is a special case of the more general
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problem of interpolating data {Xj }7~ 1 in IRS by translates of a given function
h(x). (See Section II.) Solving the more general problem entails showing
that the NxN interpolation matrix A with j,k-entry Ajk=h(xj-Xk) is
invertible. In [10-12], the researchers mentioned above showed that a
sufficient condition for A to be invertible was that the function h be strictly
conditionally negative definite of order 1. (See Section II, Definition 2.1.
The "order" just mentioned arises in connection with conditions one puts
on h.) They then described a wide class of radial functions that fit into this
category. However, they did not give quantitative estimates for either
II A -111 or for the condition number of A.

Very recently, Ball [1] gave just such estimates in the case of the func
tion h(x) = Ilxllz, which is a strictly conditionally negative definite function
of order 1. We will discuss a precise statement of his results in Sections V
and VII. The difficult estimates arise in connection with bounding the norm
of the inverse of the interpolation matrix. Once these estimates are made,
a few simple facts from matrix analysis can be used to bound the condition
number of an interpolation matrix. We wish to add that the estimate he
obtained (see (5.5)) depends only on the minimal separation distance for
the data, and not on the number of data points or on any other details of
the distribution.

Every F that is a conditionally negative definite radial function of order
1 on IRs is generated by a "Bessel" transform of some nonnegative measure.

. In Section V, we will show that if the measure generating F decays polyno
mially, then a simple adaptation of the method employed by Ball can be
used to obtain estimates on IIA -111 whenever the function h has the form
h(x) = F(llxllz). In that section we also show that it is not possible to
further adapt this method to cover cases for those h coming from F that are
generated by measures that decay exponentially. Since both J1 + llxll zand
log(1+ II X liZ) arise from F's that are generated by measures with exponen
tial decay (see Section III), further progress can only come from a different
method.

It is our purpose in writing this paper to give a general method for
obtaining quantitative estimates both for IIA -111 and for the condition
number of A when the corresponding h is a conditionally negative definite
function of the form h(x)=F(llxllz), provided that the integral representa
tion for F (see Section III) is such that the measure involved can be
estimated from below. Our method was inspired by a theorem in Zygmund
[17]. As applications of this method, we obtain quantitative estimates both
in the case where his the function J1 + IIxll~ studied by Franke [7] and
in the case where it is the function log(l + Ilxll~) analyzed by Dyn [5]. As
in the case of h(x)= IIxllz, our estimates for the norm of the inverse of the
interpolation matrix depend only on the minimal separation distance of the
distribution of data, and not on any other details of that distribution.
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Summary and outline of the paper. In Section II, we discuss the interpola
tion problem that we want to solve. In doing so, we introduce relevant
terms and notation, and state precisely a lemma that is due to Ball and
that is crucial to our method.

In Section III, we review the well-known integral representation for
order 1 conditionally negative definite radial IRs-functions. Applying this
representation, we next derive bounds on such functions; these bounds we
use in Section VII in connection with estimating condition numbers of
interpolation matrixes. We also use them, along with the theory of
tempered distributions, to give a formula that simplifies computing the
measure appearing in the integral representation when the underlying space
is [R3. Using this formula, we compute the measures generating both
j1+"? and 10g(I + r 2

).

In Section IV, we develop our method for estimating the minimum of the
quadratic form introduced in Section II and represented via the formulas of
Section III.

In Section V, we begin by showing that in cases where the radial function
F is generated by a measure that is polynomially bounded below, the
corresponding interpolation matrix is invertible; we also give a bound for
the norm of its inverse. We point out the simple method that worked for
the polynomial case will fail to provide bounds in cases where measures
have faster decay. For purposes of illustration, we then use our method to
obtain estimates on IIA-lil when h(x)= Ilxllz, the case studied by Ball [1].

In Section VI, we demonstrate the effectiveness of our method even
when the associated generating measures have exponential decay by doing
two examples. Namely, we use our method to obtain estimates on II A -1 II
when h is either )1 + Ilxll~ or 10g(I + Ilxll~).

In Section VII, we conclude by using the results from the two previous
sections to obtain upper bounds on the condition numbers for various
interpolation matrices.

II. AN INTERPOLATION PROBLEM

To provide motivation for our discussion of conditionally negative
definite radial functions, to establish notation and terminology, and to give
a precise statement of the problem that we want to solve, we wish to review
the scattered data interpolation problem; this has been discussed in detail
in several papers [6, Io-I2l

Given a continuous function h : IRS ---+ C, vectors {xj } f in IRs, and scalars
{Yj} 7, under what conditions on h can we always find a function f such
that the system of equations,

j= 1, ..., N,
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has a solution of the form
N

j(X)= L. Cjh(X-Xj)+Pm~l(X),
j=l

where Pm~ 1 is in 1Cm~ 1> the set of all polynomials in x with total degree
m - 1 or less, and where the c/s are subject to the condition

N

L. cjq(xj) = 0,
j= 1

(2.1 )

A sufficient condition for this problem to be solved (see [10--12]) is the
following: For every possible finite set {xj}f in ~s and every set of complex
number {cJ f that satisfy (2.1), the function h satisfies

N

L. Cjckh(Xk - xj ) < O.
j,k= 1

Such a function belongs to the well-known class defined below.

(2.2)

DEFINITION 2.1. Let h: ~s -t C be continuous. We say that h is condi
tionally negative definite of order m if for every finite set {xj } f of distinct
points in ~s and for every set of complex numbers {cJ f satisfying (2.1),
we have

N

L. Cjckh(Xk - xj )~ O.
j,k= 1

(2.3 )

We will denote this set by .JV:". In addition, if the inequality is strict-i.e.,
h satisfies (2.2)-then we will say that h is strictly conditionally negative
definite of order m.

We remark that functions of order 0 are negatives of the usual functions
of positive type, as defined by Bochner. We also point out that only the
topological property of continuity ~s is used, and no particular norm on
IW is singled out as special; thus, one is free to work in a norm convenient
for the case at hand. Finally, it should be noted that for m =0 and m = 1,
it is very easy to extend these definitions to cases in which ~s is replaced
by a topological group.

There is another definition that we wish to make, one that clears up a
semantical difficulty occurring in the current literature. Let us now suppose
that IRs has a norm 11·11. We define the function v: IRs -+ ~+ by v(x) = IIxll.

DEFINITION 2.2. We will say that a continuous function F: IR + -t ~ is a
conditionally negative definite radial function of order m if Fa V is in .JV:".
We will denote the set of all such functions by ~.JV:"( 11·11).



CONDITION NUMBERS FOR MATRICES 73

In the language just introduced above, a sufficient condition for the scat·
tered data interpolation problem of order m to have a solution is that h be
strictly conditionally negative definite of order m. In the m = 1 case, one
can show that if F E ~JV~ (11·112) is nonnegative and if h(x) = F( Ilx112) is
strictly conditionally negative definite, then the N x N matrix A, with
Aj,k=(xj-xk), is invertible. (See Lemma 2.3 below.) This in turn implies
that the interpolating function f(x) has the form

N

f(x) = L cjh(x-xj )+ IX.

j= 1

(2.4 )

The constant IX and the c/s, which satisfy 2..~~ 1 Cj = 0, are obtained as
follows. Let V = (1 ... 1f, Y = (y 1 ... YNf, and C = (c 1 ... eN) T. We then
have

(2.5)C = A - 1( Y - IX V).and
<A -lV, Y)

ti= <A-lV, V)

We remark that <A-lV, V) #0. If we did have <A-lV, V) =0, then with
Z = A -1 V the fact that h is strictly negative definite would imply that

N

<A-1V,V)=<AZ,Z)= L Zjzkh(Xk-XJ<O,
j,k~ 1

which is a contradiction. Also, note that if A -1 exists and F E ~JVWH 2),
then the interpolant f in (2.4) can be taken to be a "pure" radial inter
polant-i.e., f(x) = L~= 1 cjF( Ilx - xj I12)'

What has .been said above illustrates the role that the matrix A -1 plays,
and indicates the importance of estimating its norm. Indeed, estimating the
norm of A -1, when A is generated by h(x) = F( IlxI12)' with F E ~JV~ (11·112),
is precisely the problem we are addressing in this paper.

We need to say a few words about notation. Our chief concern here is
with order m = 1 conditionally negative definite radial functions on IRS with
the Hilbert-space norm, /1·112' To avoid carrying along notational baggage,
we will set

Also, we will always taken Ixl = IIxl12 when x is a vector, and for a matrix
B we will take IIBII to be the matrix norm corresponding to 11·112' Having
introduced the notation that we need, we can now state the lemma alluded
to earlier.

LEMMA 2.3 (K. Ball). Let {Xj}~ be distinct points in IRs and let FE~JVS
be nonnegative and suppose that h(x) = F( Ixl) is a strictly conditionally
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negative definite function of order 1. Also, let A be the matrix with entries
Aj,k = h(xj - Xk)' If the inequality

N N

L Ajk~j~k ~ -e L l~jl2
hk~l j=l

is satisfied whenever the complex numbers ~j satisfy L7~ 1 ~j = 0, then

(2.6)

(2.7)

(3.1 )

We omit the details of the proof; see [1]. We do wish to point out that
the proof involves only elementary matrix theory, and that a similar lemma
was proved somewhat earlier by Schoenberg [13].

This result turns the task of getting estimates for ItA -111 into one of
estimating e. The remainder of the paper is devoted to carrying out that
task.

III. REPRESENTATIONS OF CONDITIONALLY NEGATIVE

DEFINITE RADIAL FUNCTIONS

In this section, we begin by recalling that functions in ~JVS have an
integral representation in terms of a measure, a representation that plays
an important role when used in connection with Lemma 2.3. We then use
this representation to get bounds on radial functions. Employing these
bounds and a distribution theoretic argument, we give a simple method for
calculating the measure that appears in the representation-at least in the
important case when s = 3. The bounds themselves will prove useful in
estimating condition numbers; see Section VII.

It is known· [13, 16] that F(r) is a conditionally negative definite radial
function on IRs, that is, F E ~JVs, if and only if there is a positive measure
dr:t. on IR+ such that the function F (cf. [16, p. 38]; their F 2 corresponds to
our F) has the integral representation

f
oo1 - il (ur)

F(r) = F(O) + ; dr:t.(u),
o u

where we have that dr:t. satisfies the condition Sf' u-2dr:t.(u) < 00, and the
function il s( .) is [16, p. 27J

for s= 1,
(3.2)

for s= 2,3, ....
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We remark that there are several useful representations for Qs; see
[16, pp. 26, 27]. In particular, we note that when s= 3 we have

(3.3 )

We will now use (3.1) to obtain bounds on F(r) and, when s = 3, develop
a simple method for calculating the measure drx appearing in (3.1); we will
then apply this method to calculate drx in several cases of interest.

We begin by getting the bounds we need. Using the integral on the right
in (3.1), we may extend F(r) to be an even function on IR. Decompose the
right side of (3.1) into the sum

f' l-Q (ur) {ex) l-Q (ur)
F{r)=F(O)+ ; drx(u) + ; drx(u).

o U I U
(3.4)

To estimate the integral with U ~ 1, observe that from (3.2) we have
IQAx)1 ~ 1, and so

If
ex) 1- Q (ur) I fex)

I u; drx(u) ~ 2 I u- 2 drx(u).

For the integral with 0 ~ u ~ 1, we first use (3.2) and Taylor's Theorem to
get 11-QAx)1 ~ Ix1 2j2, and then we immediately arrive at

Combining (3.4) with the last two inequalities then yields

IF(r)1 ~ clr 2 + c2 • (3.5)

Thus F is bounded by a quadratic polynomial. Since F is continuous, we
also have that F may be regarded as being a tempered distribution; i.e.,
FE Y"(IR).

Let us now turn to finding a method of calculating drx in the case in
which s = 3. Of course, we have that F is a tempered distribution and there
fore so is rF(r). If we take GEf/ (we assume G is real-valued as well), then
D;G is too. Hence, it makes sense to form <rF(r), D;G(r). We may com
pute this quantity using integration by parts in the distributional sense. The
result is that

<reFer) - F(O)), D; G(r) = - <D;(rF(r)), G(r). (3.6)
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On the other hand, using (3.1) with s = 3, (3.3), and Fubini's Theorem, we
also have that

foo foo r - sin ur/u
(r(F(r)-F(O)),D~G(r))= 2 D~G(r)drda(u).

o -00 u

Integrating by parts in the integral over r, we find that

<r(F(r)-F(O)),D~G(r))=- foo foo cos urG(r) drda(u).
o -00

Observe that if G is an odd function, then D~G(r) will be even and, because
r(F(r)-F(O)) is odd, we would have <r(F(r)-F(O)), D~G(r)=O. Thus,
in addition to choosing G to be real, we lose nothing if we also require it
to be even. With this added assumption on G, the last equation can be
rewritten with the inner integral replaced by G(u), the Fourier transform of
G(r); the result is

<r(F(r)-F(O)),D~G(r))= - tOO G(u)da(u).

Because G is even, Gis too. If we extend da to be an even measure on IR,
then by regarding a'(u) =: da(u)/du as a tempered distribution (possible,
since (u 2 + 1)-1 da(u) is a finite measure), we can transform our last
equation into

<r(F(r) - F(O)), D~G(r) = - (1/2)<a'(u), G(u).

Comparing this with (3.6) gives us

<D~(rF(r)), G(r) = (1/2)(a'(u), G(u).

By using the definition of the Fourier transform of a tempered distribution
[14, Chap. 25], we finally arrive at the equation

(1/2n)( [D~(rF(r))] ~(u), G(u) = (1/2)<a'(u), G(u). (3.7)

Because of the parity and reality of the tempered distributions involved,
(3.7) actually holds for all G E Y. We thus obtain the following result.

Theorem 3.1. Let F(r) be in ~JV3. If F(r) also denotes the even exten
sion of F, then F is a tempered distribution (Ind, .in a distributional sense

a'(u) = (l/n)[D~(rF(r))] ~(u). (3.8)
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Alternatively, a'(u) may be expressed in the form

a'(u) = (2/n)[D;(rF(r))]c(u),

77

(3.9 )

where [. Jc denotes the Fourier cosine transform.

Proof We established (3.8) within the preceding discussion; (3.9)
follows immediately from (3.8) and the evenness of D;(rF(r)). I

We remark that higher dimensional analogues of this theorem exist, but
they are not as readily applicable to cases of interest.

Let us now compute the da's for the functions mentioned in Section I;
these are

if j= 1,

if j = 2,
if j= 3.

(3.10)

For F j, the even extension is Fj(r)= Irl. A standard distributional calcula
tion (see [9, p. 25J) gives us that

D;(r Irl) = 4b(r), where 15 = the Dirac b-function.

From this and (3.8), we see that a~(u) = 4/n, and so

daj = (4/n) duo (3.11)

The functions Fz and F3 are both even as analytical expressions. Using
Mathematica to do symbolic differentiation, we found that

D;(rFz(r)) = 3(1 +rZ)-5/Z and

D;(rF3(r)) = 16(1 +rZ)-3-8(1 +rZ)-Z-2(1 +rZ)-j.

These are both smooth, integrable functions; no distribution theoretic
calculations are necessary to deal with them. Indeed, using (3.9) and the
table of cosine transforms in [2, p. 11, No.7], we find that

and

Here, the function Kz(u) is a modified Bessel function of the second kind.
We close this section by pointing out that it should be possible to use

Theorem 3.1 in conjunction with a table of cosine transforms to produce a
wide variety of conditionally negative definite functions, all potentially
useful in applications.
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IV. THE METHOD

We are now ready to describe~our method for estimating the 12-norm of
the inverse interpolation matrix, A-I, described in Section II. Examples
illustrating how our method works will be given later; see Sections V
and VI.

Recall that Lemma 2.3 reduces the problem of estimating IIA -1\1 to one
of estimating - 8, the maximum of the quadratic form (2.6), the estimate
being that given in (2.7): IIA-111 ~8-1. As we shall see, the estimate we
arrive at turns out to be independent of the number of data points; indeed,
all that it depends on is the minimal separation distance between data
points.

To begin, assume that F is in ,cwJVs; thus it has the representation given
in (3.1). In (2.3), replace Ajk =F(1xj -Xkl) by the representation from (3.1).
Noting that L.7.k~l ej~k= 1L.7~1 e)2=o and letting

N N

Q:= - I Aj,~ej~k>8 I lej \2,
hk~1 j=l

we see that the quadratic form Q is given by

In our last expression for Q, let us use this form [16, p. 26] for Q s :

Qs(u Ixl)=w;-.!l f eiu<X,~> d(Js_l(IJ),
8,-1

where Ss-l, WS-l> and d(Js_l are, respectively, the unit sphere in ~s, its
volume, and the usual measure on it. This results in

To complete our argument (which was inspired by a theorem in
Zygmund [17, pp.222-224J, we make the following assumption: namely,
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that we can find a function X defined on IRS having Fourier transform i that
satisfies

(i) X~ 0

(ii) X is a radial function and

(iii) drx(U)/U2~X(U)us-ldu.

From our last expression for Q, it then follows that

Q~WS-_\(J L,-l Ijtl eiu<Xj,q>~jI2d(Js_l(ry)X(U)uS- 1duo (4.1)

By expanding the right side of (4.1) and using the usual expression for the
inverse Fourier transform of X, we arrive at

(4.2)

In (4.2), we break the right side into a sum over j = k and j # k. Using a
standard inequality, we obtain

Q~ ~sn!;[X(O) Ctl l~jI2) - j~k ~ (1~)2 + l~kI2)1 X(!xj - xkl)lJ (4.3)

If we let

N

YN=max I' !x(IXj-Xkl)!,
k j= 1

(4.4)

where the prime indicates that k # j in the summation, then we see from
(4.3) that

(4.5)

Assuming that X(O) - YN > 0, we come to our first lower bound on 8:

(4.6)

The bound for 8 given in (4.6) depends on the details of the distribution
of the x/so We will now derive a bound that depends only on the smallest
distance separating points in this distribution, and not on either the relative
positions of the x/s or on their number, N.

640/64/1-6
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By inspecting the expression for YN given in (4.4), we see that there will
be some ko for which the sum on the right will actually equal YN, and that
because X is radial the sum itself depends only on the distances between
the other points in the distribution and Xko' We may thus translate the
whole distribution so that Xko is at the origin. Also, we lose nothing if we
renumber our points so that ko~ 1 and the others are arranged so that
0< Ix2 1~ Ix3 1~ ... ~ IxNI. With these conventions, we have that

N

YN=L Ix(lx;I)I.
j=2

(4.7)

We now define a quantity q to be one-half of the smallest distance
between any two points in our distribution of x/s; that is, 2q is the
separation distance for the distribution. We will call q the separation radius,
because it represents the radius of the largest ball that can be placed
around every point of the distribution in such a way that no two balls
penetrate one another. Finally, we define

(4.8)

One can easily get an upper bound for the cardinality of tffn. Suppose
that the distribution of points is contained in a plane with dimension d~ s.
If we put a d-dimensional ball of radius q about each xj E tffn, then each ball
occupies a volume of (Wd- tld)qd. Moreover, the union of these non
penetrating balls is contained in the shell that is centered at the origin and
that has smaller radius (n-1)q and larger radius (n+2)q. Obviously, the
cardinality of tffn is bounded above by the ratio of the volume of the shell
to the volume of a single ball. Hence, for a d-dimensional distribution we
have

If we now define the quantity

/(n := sup{ Ix(lxl)l : nq ~ Ixl ~ (n + 1)q},

we see that YN satisfies
00 00

YN~ L card(tffn)/(n~3d L nd-1/(n-
n=l n~l

(4.9)

(4.10)

(4.11 )

Assuming that the distribution of points is confined to ad-dimensional
plane in ~s, we can combine (4.6) and (4.11) to obtain this bound for 8:

00

where E(q) = L nd-1/(n' (4.12)
n~l
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Provided that we can find a X for which the right side of the inequality in
(4.12) is positive, we have an upper bound for e-1 and, hence, for the
norm of A -1. We also note that although () depends on the details of the
distribution of the x/s, its lower bound in (4.12) does so only to the extent
that it is a function of q, the separation radius.

We now turn to the task of using the method described above to get
norm estimates for A -1 in several examples.

V. EXAMPLES WITH MEASURES HAVING POLYNOMIAL DECAY

In this section, we will illustrate the method sketched in Section IV by
obtaining norm estimates for the matrix A -1 arising in connection with
functions generated by measures bounded below by certain polynomiaUy
decaying measures. Specifically, we will prove that for functions in Yi.K S

arising from measures bounded below by polynomially decaying measures,
there exist norm estimates that depend only upon the separation distance.
The proof that we give is based both on the method sketched in Section
and on the proof that Ball [1] used in getting the bound when the function
in ~.Ks is taken to be F(r) = r. (See (5.5) below.) Cases in which measures
decay exponentially cannot be treated so simply, and a different method
must be employed. For purposes of comparison, we use such a method to
derive norm estimates for A -1 in the case where F(r) = rand s = 3. In
Section VI, we will treat specific, "standard" examples in which the
measures have exponential decay.

We need to be somewhat more precise about the measures that we will
study in this section. We will say that a measure da is polynomially bounded
below if there exists a polynomial P(u) that is positive on the interval
[0, (0) and that satisfies

da(u) us - 1

--;;z~ P(u) duo (5.1 )

There are many examples of such measures. In particular, the one
generating F 1(r) = r, da 1(u) = (4/n) du, is polynomially bounded below.

The approach used in [1] to find bounds on the norm of the matrix A-I
associated with F 1(r) can be easily described in terms of our method.
Essentially, a specific function X that satisfies the conditions of Section IV
and also has compact support is given. It is possible to generate a whole
class of functions satisfying these criteria, as we see from the result
below.
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PROPOSITION 5.1. Fix a>O. Let t/f(x) i=. 0 be a real-valued, infinitely
differentiable function defined on IW. Suppose that t/f depends only on Ixl and
that it has support contained in the closed ball Ixl ~ a12. The function

X(x) := t/f * t/f(x),

where * denotes the usual convolution product of two functions, has the
following properties:

(i) X is an infinitely differentiable, radial function;

(ii) X has support contained in the closed ball Ixl ~ a; in addition,
X(O) >0;

(iii) the Fourier transform of x, x, is a nonnegative Schwartz function,
and therefore falls to zero at infinity faster than any polynomial.

Proof The proof follows from standard Fourier analytic techniques,
and so we omit the details. I

Suppose that FEf7lJV S has the representation (3.1), with F(O) ~O and dr:J.
polynomially bounded below. If the distribution of points has separation
distance 2q, where q is the separation radius that we defined in Section IV,
then we may choose the X required by our method in the following way.
Let X be one of the functions whose existence is established in Proposi
tion 5.1, and choose the parameter a < q. The function X then has its sup
port contained in Ixl < 2q. In addition, because X is a Schwartz function
and decays rapidly as Ixl --+ 00, we can find a constant c> 0 such that

1 _
P(u) ~ CX(u) ~ 0 (5.2)

for all u ~ 0 and for every fixed polynomial P(u) > 0 on u ~ O. (The
constant c depends on P, of course.) Combining (5.1) and (5.2), we have

dr:J.(u) us- 1
~~ P(u) du ~ u

S

-
1CX(u) duo

If we absorb the constant c into the function X, then

dr:J.(u) s-1-
-2-~U X(u)du.

u
(5.3 )

Thus, X satisfies the conditions imposed on it in the previous section,
including tacitly assumed continuity requirements. Moreover, from (4.4)
and the fact that the support of X is contained in Ixl < 2q, we see that the
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quantity YN = 0, because IXj - xkl ~ 2q, the separation distance. Next, from
this equation, (4.6), and X(O»O, we get

(2n)'
e~-X(O»O.

W s -l

Finally, from this inequality and Lemma 2.3, we arrive at

(5.4 )

Thus we have shown the interpolation matrix for F, A, is invertible, and
that the norm of its inverse is bounded above by a quantity that depends
only on F (through da) and on the separation radius q. We collect these
results below.

THEOREM 5.2. Let FE fJ€.AI's and let F(O) ~ O. If in the representation
(3.1) the measure da is polynomially bounded below, then the interpolation
matrix A, which has j, k-entry equal to F( IXj - xkl), is invertible. Moreover,
IIA -111 is bounded above by a quantity that depends only upon F and the
separation radius q for the distribution of data points, {xj } ~~ 1 .

Rather than give an example that utilizes the construction upon which
Theorem 5.2 is based, we will refer the reader to [1], where it was shown
that, for s odd, an s-dimensional distribution of points in IR' leads to the
estimate

1 3.55s ( s - 1 )
IIA- II ~ 2Sq (1/2)(s-1)' (5.5)

when the function FEfJ€.AI'S is chosen to be F1(r)=r. For purposes of
comparison, we note that, when s =3, (5.5) becomes

(5.5')

The construction leading up to Theorem 5.2 will not work for measures
that decay exponentially fast, for the simple reason that one cannot obtain
a bound like (5.3) using a X that is compactly supported. The reason is that
i(u) decaying exponentially implies that its inverse Fourier transform X is
an analytic function in a region of iC S containing IRS. Thus X could have
compact support if and only if x(r) == O.

We will deal with F's generated by exponentially decaying measures in
the next section. Since their treatment is somewhat involved, we will now
illustrate the method used in the case of exponential decay, but with the
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(5.6)

(5.8)

function F1(r) = r. We will also take F 1E ~JV3; the measure generating this
function was found in Section III, and is da(u) = (4jn) duo (See (3.11).)

According to the method described in Section III, we need to find a
radial function X(u) that decays rapidly enough to satisfy the inequality

, 4
0::';;X(U)::';;-4'

nu

We can, in fact, find a class of rational functions that meet the criteria,
namely Xp(u)=4n- 1(p4+ u4)-\ P>O. The parameter that we choose for
a particular set of data will depend on the separation radius, q.

We begin by finding the inverse Fourier transform of Xp, Xp. This is
given by

Doing the radial part of the integral and manipulating the result, we obtain

() 1 Ico sin(ru) , ( ) 2 d
Xp r =-22 --Xp u U u

n 0 ru

=2\ lco

uXpsin(ru)du
n r 0

=~ lco u sin(ru) du
n 3r 0 p4 +u4

1 {f co ue
iru

}=-3-Im ~du .
nr -cop +u

Using standard residue arguments, we arrive at the representation

X (r) = _1_ e-(.}2/2 )pr sin (r J2 p).
P n2rp2 2

Employing the notation of Section IV and combining (5.6), (4.10), and
(4.12), we easily see that () has the lower bound

()?; p-1 (J2 - 2 Y f nd - 2e-(.}2/2 )pnQ), (5.7)
pq n ~ 1

where we can take d = 1, 2, or 3. We can simplify this expression by letting
W= (J2j2)pq in (5.7). The result is the inequality

q
(

3d co. )
()?;- 1-- I nd - 2e- nw •

W W n~1
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TABLE I

d= ... W= ... (J~ ... IIA- I II ~ ...

1 1.93 O.392q 2.55q-l
2 2.83 O.283q 3.53q-l

3 3.79 O.219q 4.56q-l

Of course, we can sum the series in (5.8). Doing so, we obtain

qe); - (1- gAw)),
w

where the function g d is given by

85

(5.9)

for d=l,
for d= 2,
for d= 3.

(5.1 0)

Because f3 was an arbitrary positive number, w is also arbitrary. We now
choose w so that the quantity on the right in (5.9) is a maximum. Choosing
w in this way results in Table I.

As Table I shows, our method produces an upper bound for IIA -Iii that
is comparable to (5.5'). In higher dimensions, similar calculations can be
used to estimate II A -111. Although we have not carried them out, we believe
that they too would yield results comparable to (5.5), but with somewhat
larger numerical factors. The increased size of these factors is expected
because of the crudeness of the estimate (4.9) for the "packing" constant
card(0"n) used in (4.11).

VI. EXAMPLES WITH MEASURES HAVING EXPONENTIAL DECAY

There are two functions in ~JV3 representative of those commonly used
in interpolation problems; these are F2(r) = J1+? and F 3(r) =
log(1+ r2

). We wish to apply the method developed in earlier sections to
estimate il A -111 for these two functions. From the results of Section III, we
see that both of these are generated by measures with exponential decay.
As we noted in Section V, exponentially decaying measures cannot be
bounded below by a measure using a compactly supported function X, so
the method used to prove Theorem 5.2 is not available. To get around
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we will derive upper bounds for IIA -111 using the ~echnique employed to
get the estimates given in Table I. As before, we will adopt the notation
used in Section IV. Our aim is to obtain a lower bound for 0, which itself
is the infimum of the quadratic form Q.

We will start with the function Fz(r). In Section III, we found that for Fz
the measure appearing in (3.1) is

(6.1 )

We must find a function x(u) such that u- z dCI.z(u) ~ X(u)U Z duo To this end,
consider the function Xz defined by

/3>0. (6.2)

Since Kz is a decreasing function, as is u- z, we have that drJ.z(u)/uZ ~

Xz(u) UZ duo As in Section V, the parameter /3 will be chosen later; it will
depend on the separation radius, q.

We must now find the inverse 1R3-Fourier transform of Xz. We begin by
noting that this function is radial and, by a calculation similar to that used
to derive (5.6), we see that its Fourier transform will be the radial function

(6.3)

Inserting (6.2) in (6.3), we find that

Using the inverse sine transform formula and the sine transform pair in
[2, p. 75, No. 35J, we see that

(6.5)

(6.6)

If we assume that the x/s in the data set are confined to a 2-dimensional
plane in 1R 3

, then using (4.12) and the observation that xir) is a decreasing
function, we find that

Oz ~ 2n
z

(xz(O) - 9 n~1 nxz(nq)),

where q is the separation radius for the given distribution of points. We
must estimate the sum

00

L'z(q) == L nXz(nq)
n~1

(6.7)



CONDITION NUMBERS FOR MATRICES 87

appearing in (6.6). To do so, we will need this lemma, which we will also
use later.

LEMMA 6.1. Fix f3 >°and q > 0, and let

p = q2(1 +j1+q2)~1.

For k = 0, 1, 2, ... , we have

(6.8)

In particular, when k = 1 we have

I ne~P-J1+n2q2 ~ (1/4 )e~Pcsch2(pf3/2).
n=l

Proof We begin with the observation that

(6.10 )

J 1+ n2q2= 1+ nq2 ( J n ) > 1+ np,
1+ 1+n2 q2

where p is given in (6.8). We thus obtain this bound for the right side of
(6.9):

Summing the bracketed series above, we arrive at the inequality

from which (6.9) follows immediately. To obtain (6.10), merely do the
required differentiations in (6.9) and then simplify. I

From (6.5), (6.7), and (6.10), we see that

.E2(q) ~ (8f3n)~2e~Pcsch2(pf3/2).

Combining this inequality with (6.5) and (6.6) yields

82 ~ f3- 1e~P(1- (9/4 )csch2(pf3/2)). (6.11 )

Up to now f3 has been a free, positive parameter. The best choice for f3
would be that value which makes the right side of (6.11) a maximum. This
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requires solving a rather messy maximization problem, however, and we
will take the simpler path of choosing {3 so that

{3= 3/p,

which gives us that

1- (9/4 )csch2(p{3/2) = 1 - (9/4)csch2(1.5) ~ 0.504.

(6.12)

Using this and (6.12) in (6.11) results in the following lower estimate
for (}2'

(6.13 )

Here, p is the function of q given in (6.8). We point out that our lower
bound depends only on the separation radius. We close our discussion of
F2(r) by noting that for large separation radius q, p ~ q and the lower
bound for (}2 behaves like 0.2q. For small q, p ~ q2/2, and the lower bound
in (6.13) behaves like (0.1 q2)e-6/q2

• For large q, we thus expect good inter
polation properties for the scattered data problem when F2 is used as the
radial function. When q is small, our lower bound indicates that we can
expect very poor interpolation properties for F2 • These results suggest that,
for q small, one would obtain much better interpolation properties using
the function J4q2 + r2

, which is easily seen to have IIA -111 ~ 6/q.
Let us now turn our attention to the function F 3(r) = log(1 + r 2

). Again
we will discuss the case of data confined to a 2-dimensional set in [R3. In
Section III, we showed that for F 3 the measure appearing in (3.1) was

drx3 = 2u(1 + u)e- U duo

For purposes of estimating (}3 in this case, we begin by noting that

drx3(U);?; 2u4 [ (u 2 + {32) -1 + (u 2 + {32) -3/2] e_~u2+ p2 du

== U4X3(U) du, (6.14)

where {3 is again an arbitrary positive number. Using the analogue of (6.3)
and the Fourier sine transform pair found in [2, p. 112, No. 42], one finds
X3'S inverse [R3-Fourier transform, X3' is

(6.15)

Here Ko is the order 0 modified Bessel function of the second kind.
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As in the previous case, this function is a decreasing one, and the sum
we need to estimate is

00 00

173(q)= L: nX3(nq)=n-2 L: nKoU3 Jl+n 2q2). (6.16)
n=l n=l

To do this, first replace Ko with the integral representation for it found in
[15, p.185J, and then, in the formula obtained, interchange sum and
integral to finally arrive at

L 3(q) = (1/n)2 {OO C~1 ne- tP"/ 1 + n
2q2

) (t2 - 1) -1/2 dt. (6.17)

We can estimate the sum (6.16) using (6.17) and the inequality (6.10),
with P~ tp. The inequality we get is

1:'3(q) ~ (1/2n? Joo e- tPcsch2(tpP/2)(t 2 _1)-1/2 dt, (6.18)
1

where p is given in terms of q in (6.8). Because csch 2(tpP/2) is a decreasing
function of t when t > 0, we have that for t ~ 1, csch2(tpfJ/2) ~ csch 2(pfJ/2).
Using this in (6.18) gives us

Recognizing the integral as Ko(fJ) (see [15, p.185J), we come to the
foHowing estimate for 1:'3:

(6.20)

We can now estimate e3 , the lower bound for Q when F= F 3 . From
(4.12), the estimate is

e3~ 2n2(X3(0) - 9173(q))·

From (6.15), (6.20), and (6.21), we see that

e3 ~ 2Ko(fJ)( 1 - (7/4)csch2(pP)).

(6.21 )

(6.22 )

Again we are faced with a situation where f3 > 0 is arbitrary. Obviously, the
best choice for fJ is that value which for fixed p results in a maximum for
the left side of (6.22). As before, this results in a very messy maximization
problem. Rather than solving this problem, we shall simply choose fJ = 3/p,
as we did in our previous problem. Doing so yields

(6.23 )
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as a lower estimate for (J3' Here again p is given by (6.8). As before, the
lower bound depends only on the separation distance q. We also again
have that for small q the behavior of p is p ~ q2/2, and that for large
q, p ~ q. Consequently, when q is small, 3/p is large, and we can evaluate
Ko(3/p) by using Ko's large-argument asymptotic formula [15, p.202J to
obtain

Ko(3/p) ~ (pn/3)1/2 e -3/p •

Using this, (6.23), and p ~ q2/2 yields

(J3(q) ~ 0.729qe- 6
/
q2 (6.24)

as our lower estimate for q small. When p ~ q is large, we have [15, p. 80J

Ko(3/p) ~ -log[3/(2q)J,

which implies that for q large

(J3(q) ~ 1.0110g(2q/3). (6.25)

The lower bounds in (6.24) and (6.25) indicate that the remarks made
concerning the interpolation properties of F 2 apply to F 3 as well, except
that when q is small we expect slightly better behavior for F 3 and that
when q is large the reverse should be true.

All that we have said so far applies to two-dimensional distributions of
points. Distributions that are one or three dimensional can be dealt with in
a similar way. For example, in the three-dimensional case the chief
difference is that, from (4.12), the lower bound on (J is
(J~2n2(x(0)- :L:'=127n2x(nq)) instead of (6.6) or (6.21), and so one must
use the k = 2 case in Lemma 6.1. Bearing in mind these differences, one can
easily show that for three-dimensional distributions

(J2 ~ 0.117pe -4/p and (J3 ~ 0.467Ko(4/p). (6.26)

TABLE II

F2

d= ... Restrictions ()~ ... IIA-III ~ ...

2 p = q2(1 +Jl-~7)-1 (O.168p)e- 3Ip (S.9Slp )e3fP

2 q ...... 00 O.2q 61q
2 q~O (O.lq2)e- 6Iq2 (12/q2)e 6Iq2

3 p=q2(1 +Jj-:t?)-I O.117pe- 4Ip (8.SSlp )e4lp

3 q ...... 00 O.lq 91q
3 qR<O O.OS9q2e - 8/1 (171q2) e81q2
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TABLE III
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d = ... Restrictions

2 p=q2(1 +~)-I
2 q-+CI)

2 q;>:;O
3 p=q2(1 +~)-I
3 q-+CI)

3 q;>:;O

(}'? ...

1.01Ko(3/p)
1.01Iog(2q/3 )
O.729qe -6/i'

0.467Ko(4/p)
0.467 log(q/2)
0.886qe - 8/i'

0.99(Ko(3/p)) -I

O.99(log(2q/3)) -1

(1.37/q)e 6
/
q1

2.14(Ko(4/p)) -1

2.14(log(q/2)) -1

(1.l3/q)e B/i'

Here we chose the parameter fJ = 4/p, where p is as in (6.8). As expected,
the behavior is somewhat worse than the two-dimensional case. We did not
carry out calculations for one-dimensional distributions. Doing them
introduces nothing new. We summarize our results in Tables II and III.

VII. BOUNDS ON CONDITION NUMBERS

In this section, we first obtain a bound on the norm for the interpolation
matrix A corresponding to a function F in ~JVs. This bound is then used
in conjunction with our earlier estimates for II A -111 to get a bound on the
condition number for A corresponding to one of the functions F I (r) = r,
Fz(r) = j!+?, and F3(r)=log(1+rZ

). For FI(r)=r, these bounds have
already been obtained in [1].

Throughout the section, we will let S = {xj } 7~ I C IRs, and we will set
D = maxj"ek IXj - xkl, xj E S, the diameter of S. We can now give our bound
for IIAII.

Proposition 7.1. Let S c IRs be a data set of diameter D, separation
radius q, and cardinality N. If F E ~JVs, with F(O) ~ 0, then

where M=maxF(!xj-Xkl). (7.1)
j#k

In addition, IIA II also satisfies the bound

IIAII ~M(D;q2qy

where M is as in (7.1). Finally, if F is increasing, then

IIAII ~F(D) (D;q
2qr

(7.2)

(7.3 )
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Proof The proof here is a generalization of a similar one used in [1].
We begin by noting that the operator norm of a matrix is dominated by
its Hilbert-Schmidt norm, and so we have that

IIAII ~CEI FZ(IXj_Xkl)Y/Z ~NM,

which establishes (7.1).
Since the separation radius of S is q, each point in S may be placed at

the center of a ball of radius q. Moreover, these balls will not penetrate
each other, and they will occupy a total volume of Ns- 1w s _l qS. On the
other hand, since the diameter of S is D, the region occupied by them
will also be contained in a large ball of diameter D + 2q and volume
S-lws _l«D + 2q)/2Y. Hence,

-1 S -1 (D+2q)sNs w s - 1q ~ S W s _ 1 -2- ,

from which we see that the number of points in S, N, satisfies

(
D+2q)S

N~ --.
2q

(7.4)

Combining (7.1) and (7.4) yields (7.2). For F increasing, which wil be the
case whenever F'(Jr) is completely monotonic (see [12]), the inequality
(7.3) is an immediate consequence of (7.2). I

Several remarks are in order. First, if F(O) = 0, the factor of N in (7.1)
may be replaced by JN(N - 1), because all the N entries of the diagonal
of A vanish and so do not contribute to the Hilbert-Schmidt norm of A.
Second, when F(r) = F 1(r) = r, the inequality in (7.1), with N --> J N(N- 1)
and M = D, becomes

IIAII ~DJN(N-1). (7.5)

This result agrees with that given in [1], where it is also shown that
the inequality (7.5) is sharp when points in the data set are uiformly
distributed.

Recall that the condition number of A is defined to be the product
IIAIIIIA- 1 11. By combining the bounds for IIAII with the ones derived in
Sections V and VI for IIA -111, we can easily obtain upper estimates on the
condition numbers for the three functions F 1(r) = r, Fz(r) = J1+"?, and
F3(r) =10g(1 + rZ

), with the data set S being either planar or some
unrestricted subset of [R3. Our results are given in Table IV. In that table,
S = 3 because all three functions are regarded as being in Bl.K 3

• As usual,
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TABLE IV

Upper Bounds on Condition Numbers
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2

3

3.53Dq-l (D ;/q) 3

4.56Dq-l (D ;:q)3

5.95)1 +D2e3/p (D +2q)3
P 2q

8.55)1 +D
2

e4/p (D+2q)3
p 2q

0.99 log(l +D2)(D +2q)3
Ko(3/p) 2q

2.14 log(l +D2).(D +2q)3
Ko(4/p) 2q

q denotes the separation radius, which is half the minimal separation
distance, and p=q2(1 +~)-l. Finally, d is the dimension of the
smallest affine subspace containing the data set S.
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